#Z089. [USACO07NOV]Cow Relays G
[USACO07NOV]Cow Relays G
[USACO07NOV]Cow Relays G
题目描述
FJ的N(2 <= N <= 1,000,000)头奶牛选择了接力跑作为她们的日常锻炼项目。至于进行接力跑的地点 自然是在牧场中现有的T(2 <= T <= 100)条跑道上。 农场上的跑道有一些交汇点,每条跑道都连结了两个不同的交汇点 I1_i和I2_i(1 <= I1_i <= 1,000; 1 <= I2_i <= 1,000)。每个交汇点都是至少两条跑道的端点。 奶牛们知道每条跑道的长度length_i(1 <= length_i <= 1,000),以及每条跑道连结的交汇点的编号 并且,没有哪两个交汇点由两条不同的跑道直接相连。你可以认为这些交汇点和跑道构成了一张图。 为了完成一场接力跑,所有N头奶牛在跑步开始之前都要站在某个交汇点上(有些交汇点上可能站着不只1头奶牛)。当然,她们的站位要保证她们能够将接力棒顺次传递,并且最后持棒的奶牛要停在预设的终点。 你的任务是,写一个程序,计算在接力跑的起点(S)和终点(E)确定的情况下,奶牛们跑步路径可能的最小总长度。显然,这条路径必须恰好经过N条跑道。
题面翻译
给定一张 条边的无向连通图,求从 到 经过 条边的最短路长度。
输入格式
第一行四个正整数 ,意义如题面所示。
接下来 行每行三个正整数 ,分别表示路径的长度,起点和终点。
输出格式
一行一个整数表示图中从 到 经过 条边的最短路长度。
样例 #1
样例输入 #1
2 6 6 4
11 4 6
4 4 8
8 4 9
6 6 8
2 6 9
3 8 9
样例输出 #1
10
数据范围
对于所有的数据,保证 ,。
所有的边保证 ,。